在如下8*6的矩阵中,请计算从A移动到B一共有____种走法。要求每次只能向上或向右移动一格,并且不能经过P。

在如下8*6的矩阵中,请计算从A移动到B一共有__种走法。要求每次只能向上或向右移动一格,并且不能经过P。
技术分享

A:456
B:492
C:568
D:626
E:680
F:702

解析:
8*6的矩阵,从左下角A到右上角B,一共需要走12步,其中5步向上,7步向右,因此总的走法一共有C(12,5)=792种,但题目规定不能经过P,因此需要减去经过P点的走法。
经过P的路径分为两部分,从A到P,从P到B。
同理,从A到P的走法:C(6,2)=15;
同理,从P到B的走法:C(6,3)=20;
因此从A到B经过P点的走法有15*20=300种,
所以从A到B不经过P点的走法有792-300=492种。

这题其实可以用程序算出来
简单的动态规划
dp[i][j] = dp[i][j-1] + dp[i-1][j];

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>

using namespace std;
int main()
{

  int dp[100][100] = {0};

  for(int i = 1; i <= 6; i++)
    for(int j = 1; j <= 8; j++){        
        dp[i][j] = dp[i-1][j] + dp[i][j-1];
    }

    int dp2[100][100] = {0};
    dp2[0][1] = 1;

    for(int i = 1; i <= 4; i++)
        for(int j = 1; j <= 4; j++)
            dp2[i][j] = dp2[i-1][j] + dp2[i][j-1];

    cout<<dp[6][8] - dp2[4][4] * dp[3][5]<<endl;

  return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

文章来自:http://blog.csdn.net/u013445530/article/details/48000563
© 2021 jiaocheng.bubufx.com  联系我们
ICP备案:鲁ICP备09046678号-3