Spark实战3:异常检测算法Scala语言
异常检测原理是根据训练数据的高斯分布,计算均值和方差,若测试数据样本点带入高斯公式计算的概率低于某个阈值(0.1),判定为异常点。
1 创建数据集转化工具类,把csv数据集转化为RDD数据结构
import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.rdd.RDD object FeaturesParser{ def parseFeatures(rawdata: RDD[String]): RDD[Vector] = { val rdd: RDD[Array[Double]] = rawdata.map(_.split(",").map(_.toDouble)) val vectors: RDD[Vector] = rdd.map(arrDouble => Vectors.dense(arrDouble)) vectors } def parseFeaturesWithLabel(cvData: RDD[String]): RDD[LabeledPoint] = { val rdd: RDD[Array[Double]] = cvData.map(_.split(",").map(_.toDouble)) val labeledPoints = rdd.map(arrDouble => new LabeledPoint(arrDouble(0), Vectors.dense(arrDouble.slice(1, arrDouble.length)))) labeledPoints } }
2 创建异常检测工具类,主要是预测是否为异常点
object AnomalyDetection { /** * True if the given point is an anomaly, false otherwise * @param point * @param means * @param variances * @param epsilon * @return */ def predict (point: Vector, means: Vector, variances: Vector, epsilon: Double): Boolean = { println("-->") println("-->v1"+probFunction(point, means, variances)) println("-->v2"+epsilon) probFunction(point, means, variances) < epsilon } def probFunction(point: Vector, means: Vector, variances: Vector): Double = { val tripletByFeature: List[(Double, Double, Double)] = (point.toArray, means.toArray, variances.toArray).zipped.toList tripletByFeature.map { triplet => val x = triplet._1 val mean = triplet._2 val variance = triplet._3 val expValue = Math.pow(Math.E, -0.5 * Math.pow(x - mean,2) / variance) (1.0 / (Math.sqrt(variance) * Math.sqrt(2.0 * Math.PI))) * expValue }.product } }
3异常检测模型类
import org.apache.spark.mllib.linalg._ import org.apache.spark.rdd.RDD class AnomalyDetectionModel(means2: Vector, variances2: Vector, epsilon2: Double) extends java.io.Serializable{ var means: Vector = means2 var variances: Vector = variances2 var epsilon: Double = epsilon2 def predict(point: Vector) : Boolean ={ println("-->1") AnomalyDetection.predict(point, means, variances, epsilon) } def predict(points: RDD[Vector]): RDD[(Vector, Boolean)] = { println("-->2") points.map(p => (p,AnomalyDetection.predict(p, means, variances, epsilon))) } }
4 包括启动异常检测模型,优化参数,输出评价指标等函数功能(注意序列化Serializable )
import org.apache.spark.Logging import org.apache.spark.mllib.linalg._ import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics} import org.apache.spark.rdd.RDD /** * Anomaly Detection algorithm */ class AnomalyDetection extends java.io.Serializable with Logging { val default_epsilon: Double = 0.01 def run(data: RDD[Vector]): AnomalyDetectionModel = { val sc = data.sparkContext val stats: MultivariateStatisticalSummary = Statistics.colStats(data) val mean: Vector = stats.mean val variances: Vector = stats.variance logInfo("MEAN %s VARIANCE %s".format(mean, variances)) // println(s"--> MEAN VARIANCE$mean,$variances") println("--> MEAN VARIANCE"+mean+variances) new AnomalyDetectionModel(mean, variances, default_epsilon) } /** * Uses the labeled input points to optimize the epsilon parameter by finding the best F1 Score * @param crossValData * @param anomalyDetectionModel * @return */ def optimize(crossValData: RDD[LabeledPoint], anomalyDetectionModel: AnomalyDetectionModel) = { val sc = crossValData.sparkContext val bcMean = sc.broadcast(anomalyDetectionModel.means) val bcVar = sc.broadcast(anomalyDetectionModel.variances) //compute probability density function for each example in the cross validation set val probsCV: RDD[Double] = crossValData.map(labeledpoint => AnomalyDetection.probFunction(labeledpoint.features, bcMean.value, bcVar.value) ) //select epsilon crossValData.persist() val epsilonWithF1Score: (Double, Double) = evaluate(crossValData, probsCV) crossValData.unpersist() logInfo("Best epsilon %s F1 score %s".format(epsilonWithF1Score._1, epsilonWithF1Score._2)) new AnomalyDetectionModel(anomalyDetectionModel.means, anomalyDetectionModel.variances, epsilonWithF1Score._1) } /** * Finds the best threshold to use for selecting outliers based on the results from a validation set and the ground truth. * * @param crossValData labeled data * @param probsCV probability density function as calculated for the labeled data * @return Epsilon and the F1 score */ private def evaluate(crossValData: RDD[LabeledPoint], probsCV: RDD[Double]) = { val minPval: Double = probsCV.min() val maxPval: Double = probsCV.max() logInfo("minPVal: %s, maxPVal %s".format(minPval, maxPval)) val sc = probsCV.sparkContext var bestEpsilon = 0D var bestF1 = 0D val stepsize = (maxPval - minPval) / 1000.0 //find best F1 for different epsilons for (epsilon <- minPval to maxPval by stepsize){ val bcepsilon = sc.broadcast(epsilon) val ourPredictions: RDD[Double] = probsCV.map{ prob => if (prob < bcepsilon.value) 1.0 //anomaly else 0.0 } val labelAndPredictions: RDD[(Double, Double)] = crossValData.map(_.label).zip(ourPredictions) val labelWithPredictionCached: RDD[(Double, Double)] = labelAndPredictions val falsePositives = countStatisticalMeasure(labelWithPredictionCached, 0.0, 1.0) val truePositives = countStatisticalMeasure(labelWithPredictionCached, 1.0, 1.0) val falseNegatives = countStatisticalMeasure(labelWithPredictionCached, 1.0, 0.0) val precision = truePositives / Math.max(1.0, truePositives + falsePositives) val recall = truePositives / Math.max(1.0, truePositives + falseNegatives) val f1Score = 2.0 * precision * recall / (precision + recall) if (f1Score > bestF1){ bestF1 = f1Score bestEpsilon = epsilon } } (bestEpsilon, bestF1) } /** * Function to calculate true / false positives, negatives * * @param labelWithPredictionCached * @param labelVal * @param predictionVal * @return */ private def countStatisticalMeasure(labelWithPredictionCached: RDD[(Double, Double)], labelVal: Double, predictionVal: Double): Double = { labelWithPredictionCached.filter { labelWithPrediction => val label = labelWithPrediction._1 val prediction = labelWithPrediction._2 label == labelVal && prediction == predictionVal }.count().toDouble } }
5 读取数据集,在hdfs的路径/user/mapr/,转化为RDD,训练模型,预测异常点:
import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.mllib.linalg._ import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.rdd.RDD // val conf = new SparkConf().setAppName("Anomaly Detection Spark2") // val sc = new SparkContext(conf) val rawFilePath = "/user/mapr/training.csv" val cvFilePath = "/user/mapr/cross_val.csv" val rawdata = sc.textFile(rawFilePath, 2).cache() val cvData = sc.textFile(cvFilePath, 2).cache() val trainingVec: RDD[Vector] = FeaturesParser.parseFeatures(rawdata) val cvLabeledVec: RDD[LabeledPoint] = FeaturesParser.parseFeaturesWithLabel(cvData) // trainingVec.collect().foreach(println) // cvLabeledVec.collect().foreach(println) val data = trainingVec.cache() val anDet: AnomalyDetection = new AnomalyDetection() //derive model val model = anDet.run(data) val dataCvVec = cvLabeledVec.cache() // val optimalModel = anDet.optimize(dataCvVec, model) //find outliers in CV val cvVec = cvLabeledVec.map(_.features) // cvVec.collect().foreach(println) // print("-->"+typeOf[cvVec]) val results = model.predict(cvVec) // results.collect().foreach(println) val outliers = results.filter(_._2).collect() // outliers.foreach(v => println(v._1)) println("\nFound %s outliers\n".format(outliers.length))
备注:输出的部分结果为,异常点输出
文章来自:http://www.cnblogs.com/rongyux/p/5731554.html