Elasticsearch搜索之explain评分分析
Lucene的IndexSearcher提供一个explain方法,能够解释Document的Score是怎么得来的,具体每一部分的得分都可以详细地打印出来。这里用一个中文实例来纯手工验算一遍Lucene的评分算法,并且结合Lucene的源码做一个解释。
首先是测试用例,我使用“北京东路”来检索一个含有address域的文档。
然后是是输出,注意它有缩进,代表一个个的层级,下面以测试环境数据作为举例:
{
        "value" : 0.7271681,
        "description" : "max of:",
        "details" : [ {
          "value" : 0.7271681,
          "description" : "sum of:",
          "details" : [ {
            "value" : 0.43069553,
            "description" : "weight(address:北京 in 787) [PerFieldSimilarity], result of:",
            "details" : [ {
              "value" : 0.43069553,
              "description" : "score(doc=787,freq=1.0), product of:",
              "details" : [ {
                "value" : 0.34374008,
                "description" : "queryWeight, product of:",
                "details" : [ {
                  "value" : 5.0118747,
                  "description" : "idf(docFreq=2104, maxDocs=116302)"
                }, {
                  "value" : 0.06858513,
                  "description" : "queryNorm"
                } ]
              }, {
                "value" : 1.2529687,
                "description" : "fieldWeight in 787, product of:",
                "details" : [ {
                  "value" : 1.0,
                  "description" : "tf(freq=1.0), with freq of:",
                  "details" : [ {
                    "value" : 1.0,
                    "description" : "termFreq=1.0"
                  } ]
                }, {
                  "value" : 5.0118747,
                  "description" : "idf(docFreq=2104, maxDocs=116302)"
                }, {
                  "value" : 0.25,
                  "description" : "fieldNorm(doc=787)"
                } ]
              } ]
            } ]
          }, {
            "value" : 0.29647252,
            "description" : "weight(address:东路 in 787) [PerFieldSimilarity], result of:",
            "details" : [ {
              "value" : 0.29647252,
              "description" : "score(doc=787,freq=1.0), product of:",
              "details" : [ {
                "value" : 0.2851919,
                "description" : "queryWeight, product of:",
                "details" : [ {
                  "value" : 4.158218,
                  "description" : "idf(docFreq=4942, maxDocs=116302)"
                }, {
                  "value" : 0.06858513,
                  "description" : "queryNorm"
                } ]
              }, {
                "value" : 1.0395545,
                "description" : "fieldWeight in 787, product of:",
                "details" : [ {
                  "value" : 1.0,
                  "description" : "tf(freq=1.0), with freq of:",
                  "details" : [ {
                    "value" : 1.0,
                    "description" : "termFreq=1.0"
                  } ]
                }, {
                  "value" : 4.158218,
                  "description" : "idf(docFreq=4942, maxDocs=116302)"
                }, {
                  "value" : 0.25,
                  "description" : "fieldNorm(doc=787)"
                } ]
              } ]
            } ]
          } ]
        } ]
      }
 | 
这个看起来可真是头疼,尝试解释一下:
首先,需要学习Lucene的评分计算公式——

分值计算方式为查询语句q中每个项t与文档d的匹配分值之和,当然还有权重的因素。其中每一项的意思如下表所示:
| 
 表3.5  | 
 评分公式中的因子  | 
| 
 评分因子  | 
 描 述  | 
| 
 tf(t in d)  | 
 项频率因子——文档(d)中出现项(t)的频率  | 
| 
 idf(t)  | 
 项在倒排文档中出现的频率:它被用来衡量项的“唯一”性.出现频率较高的term具有较低的idf,出现较少的term具有较高的idf  | 
| 
 boost(t.field in d)  | 
 域和文档的加权,在索引期间设置.你可以用该方法 对某个域或文档进行静态单独加权  | 
| 
 lengthNorm(t.field in d)  | 
 域的归一化(Normalization)值,表示域中包含的项数量.该值在索引期间计算,并保存在索引norm中.对于该因子,更短的域(或更少的语汇单元)能获得更大的加权  | 
| 
 coord(q,d)  | 
 协调因子(Coordination factor),基于文档中包含查询的项个数.该因子会对包含更多搜索项的文档进行类似AND的加权  | 
| 
 queryNorm(q)  | 
 每个査询的归一化值,指毎个查询项权重的平方和  | 
总匹配分值的计算
具体到上面的测试来讲,地址字段address匹配了二个词条,先分别计算每个词条对应的分值,然后相加,最后结果= ("北京") 0.43069553+ (“东路”)0.29647252=0.7271681 (结果舍入)。
查询语句在某个field匹配分值计算
这个0.43069553是如何来的呢?这是词条“北京”在field中的分值=查询权重queryWeight * 域权重fieldWeight 即 0.34374008*1.2529687=0.43069553。
同埋“东路”这个词条在field中的分值=查询权重queryWeight * 域权重fieldWeight 即 0.2851919*1.0395545=0.29647252
queryWeight的计算
queryWeight的计算可以在TermQuery$TermWeight.normalize(float)方法中看到计算的实现:
public void normalize(float queryNorm) {
this.queryNorm = queryNorm;
//原来queryWeight 为idf*t.getBoost(),现在为queryNorm*idf*t.getBoost()。
queryWeight *= queryNorm;
value = queryWeight * idf;
}
其实默认情况下,queryWeight = idf * queryNorm,因为Lucene中默认的boost = 1.0。
以“北京”这个词条为例,查询权重queryWeight = idf * queryNorm,即 0.34374008 = 5.0118747*0.06858513。
idf的计算
idf是项在倒排文档中出现的频率,计算方式为
/** Implemented as <code>log(numDocs/(docFreq+1)) + 1</code>. */
@Overrid
public float idf(long docFreq, long numDocs) {
return (float)(Math.log(numDocs/(double)(docFreq+1)) + 1.0);
}
docFreq是根据指定关键字进行检索,检索到的Document的数量,我们测试“北京”词条的docFreq=2104;
numDocs是指索引文件中总共的Document的数量,对应explain结果中的maxDocs,我们测试的maxDocs=116302。
用计算器验证一下,没有错误,这里就不啰嗦了。
fieldWeight的计算
fieldWeight = tf * idf * fieldNorm
tf和idf的计算参考前面的,fieldNorm的计算在索引的时候确定了,此时直接从索引文件中读取,这个方法并没有给出直接的计算。
如果使用DefaultSimilarity的话,它实际上就是lengthNorm,域越长的话Norm越小,在org/apache/lucene/search/similarities/DefaultSimilarity.java里面有关于它的计算:
public float lengthNorm(FieldInvertState state) {
final int numTerms;
if (discountOverlaps)
numTerms = state.getLength() - state.getNumOverlap();
else
numTerms = state.getLength();
return state.getBoost() * ((float) (1.0 / Math.sqrt(numTerms)));
}
这个我就不再验算了,每个域的Terms数量开方求倒数乘以该域的boost得出最终的结果。