结合彩色图和深度图创建点云(OpenCV+OpenNI+PCL)
试验了好久了,终于成功了!用OpenNI获取彩色和深度数据流,转化成OpenCV的Mat图像格式。
对相机进行标定,获取相机的内部参数:
Calibration results after optimization (with uncertainties): //优化后的参数值
Focal Length: fc = [ 510.99171 513.71815 ] ? [ 1.99569 2.13975 ] //焦距
Principal point: cc = [ 324.12889 236.29232 ] ? [ 3.66214 3.41361 ] //关键点
Skew: alpha_c = [ 0.00000 ] ? [ 0.00000 ] => angle of pixel axes = 90.00000 ? 0.00000 degrees
Distortion: kc = [ 0.06196 -0.25035 -0.00173 0.00098 0.00000 ] ? [ 0.02152 0.08623 0.00242 0.00263 0.00000 ]
Pixel error: err = [ 0.33426 0.40108 ]
设(u, v)是像素坐标系的坐标,(Xw, Yw,Zw)是世界坐标系的坐标。
则标定后可以通过(u, v)求出(Xw, Yw),公式如下:
Xw = (u - u0) * Zw / fx;
Yw = (v - v0) *Zw / fy;
其中(u0,v0)是光轴与像素平面的交点坐标。
效果图如下:
代码如下:
<span style="font-size:18px;">#include <pcl/visualization/cloud_viewer.h> #include <iostream> #include <pcl/io/io.h> #include <pcl/io/pcd_io.h> #include <opencv2/opencv.hpp> int user_data; const double u0 = 319.52883; const double v0 = 271.61749; const double fx = 528.57523; const double fy = 527.57387; void viewerOneOff (pcl::visualization::PCLVisualizer& viewer) { viewer.setBackgroundColor (0.0, 0.0, 0.0); } int main () { pcl::PointCloud<pcl::PointXYZRGB> cloud_a; pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGB>); cv::Mat color = cv::imread("Image1.jpg"); cv::Mat depth = cv::imread("cc.jpg"); int rowNumber = color.rows; int colNumber = color.cols; cloud_a.width = rowNumber; cloud_a.height = colNumber; cloud_a.points.resize(cloud_a.width*cloud_a.height); for (unsigned int u = 0; u < rowNumber; ++u) { for (unsigned int v = 0; v < colNumber; ++v) { unsigned int num = u*rowNumber + v; double Xw = 0, Yw = 0, Zw = 0; Zw = ((double)depth.at<uchar>(u,v)) / 255.0 * 10001.0; Xw = (u-u0) * Zw / fx; Yw = (v-v0) * Zw / fy; cloud_a.points[num].b = (int)color.at<cv::Vec3b>(u,v)[0]; cloud_a.points[num].g = (int)color.at<cv::Vec3b>(u,v)[1]; cloud_a.points[num].r = (int)color.at<cv::Vec3b>(u,v)[2]; cloud_a.points[num].x = Xw; cloud_a.points[num].y = Yw; cloud_a.points[num].z = Zw; } } *cloud = cloud_a; pcl::visualization::CloudViewer viewer("Cloud Viewer"); viewer.showCloud(cloud); viewer.runOnVisualizationThreadOnce (viewerOneOff); while (!viewer.wasStopped ()) { user_data = 9; } return 0; }</span>