双边滤波原理与C++实现
一、原理
双边滤波(Bilateral filter)是一种可以去噪保边的滤波器。之所以可以达到此效果,是因为滤波器是由两个函数构成:一个函数是由几何空间距离决定滤波器系数,另一个由像素差值决定滤波器系数。
原理示意图如下:
双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,

权重系数w(i,j,k,l)取决于定义域核

和值域核

的乘积

二、C++实现
2.1 OpenCV调用方法:
cvSmooth(m_iplImg, dstImg, CV_BILATERAL, 2 * r + 1, 0, sigma_r, sigma_d);
2.2 MATLAB版代码:
调用方法参见资料[1]
2.3 C++代码
void CImageObj::Bilateral_Filter(int r, double sigma_d, double sigma_r)
{
int i, j, m, n, k;
int nx = m_width, ny = m_height;
int w_filter = 2 * r + 1; // 滤波器边长
double gaussian_d_coeff = -0.5 / (sigma_d * sigma_d);
double gaussian_r_coeff = -0.5 / (sigma_r * sigma_r);
double** d_metrix = NewDoubleMatrix(w_filter, w_filter); // spatial weight
double r_metrix[256]; // similarity weight
// copy the original image
double* img_tmp = new double[m_nChannels * nx * ny];
for (i = 0; i < ny; i++)
for (j = 0; j < nx; j++)
for (k = 0; k < m_nChannels; k++)
{
img_tmp[i * m_nChannels * nx + m_nChannels * j + k] = m_imgData[i * m_nChannels * nx + m_nChannels * j + k];
}
// compute spatial weight
for (i = -r; i <= r; i++)
for (j = -r; j <= r; j++)
{
int x = j + r;
int y = i + r;
d_metrix[y][x] = exp((i * i + j * j) * gaussian_d_coeff);
}
// compute similarity weight
for (i = 0; i < 256; i++)
{
r_metrix[i] = exp(i * i * gaussian_r_coeff);
}
// bilateral filter
for (i = 0; i < ny; i++)
for (j = 0; j < nx; j++)
{
for (k = 0; k < m_nChannels; k++)
{
double weight_sum, pixcel_sum;
weight_sum = pixcel_sum = 0.0;
for (m = -r; m <= r; m++)
for (n = -r; n <= r; n++)
{
if (m*m + n*n > r*r) continue;
int x_tmp = j + n;
int y_tmp = i + m;
x_tmp = x_tmp < 0 ? 0 : x_tmp;
x_tmp = x_tmp > nx - 1 ? nx - 1 : x_tmp; // 边界处理,replicate
y_tmp = y_tmp < 0 ? 0 : y_tmp;
y_tmp = y_tmp > ny - 1 ? ny - 1 : y_tmp;
int pixcel_dif = (int)abs(img_tmp[y_tmp * m_nChannels * nx + m_nChannels * x_tmp + k] - img_tmp[i * m_nChannels * nx + m_nChannels * j + k]);
double weight_tmp = d_metrix[m + r][n + r] * r_metrix[pixcel_dif]; // 复合权重
pixcel_sum += img_tmp[y_tmp * m_nChannels * nx + m_nChannels * x_tmp + k] * weight_tmp;
weight_sum += weight_tmp;
}
pixcel_sum = pixcel_sum / weight_sum;
m_imgData[i * m_nChannels * nx + m_nChannels * j + k] = (uchar)pixcel_sum;
} // 一个通道
} // END ALL LOOP
UpdateImage();
DeleteDoubleMatrix(d_metrix, w_filter, w_filter);
delete[] img_tmp;
}
性能方面,跟OpenCV处理速度有差距,有兴趣的,可以自己研究OpenCV版本的源代码
三、效果图
四、参考资料
资料[4]是MIT的学习资料,最全面,包括课件、论文、代码等,涵盖原理、改进、应用、与PDE的联系等等,最值得一看。
[1] 双边滤波器的原理及实现[Rachel-Zhang]
[4]
MIT学习资料
文章来自:http://blog.csdn.net/cyh706510441/article/details/46581417